Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399444

RESUMEN

In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.

2.
J Pept Sci ; 30(2): e3537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37607826

RESUMEN

The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.


Asunto(s)
Fragmentos de Péptidos , Medicina Regenerativa , Animales , Ratones , Humanos , Fragmentos de Péptidos/química , Colágeno/metabolismo , Péptidos , Anticuerpos , Celulosa
3.
Nanoscale ; 15(45): 18265-18282, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37795813

RESUMEN

Due to their high strength, low weight, and biologically-inspired dimensions, carbon nanotubes have found wide interest across all of medicine. In this study, four types of highly dispersible multi-walled carbon nanotubes (CNTs) of similar dimensions, but slightly different chemical compositions, were compared with an unmodified material to verify the impact their surface chemistry has on cytocompatibility, anticancer, inflammation, and antibacterial properties. Minute changes in the chemical composition were found to greatly affect the biological performance of the CNTs. Specifically, the CNTs with a large number of carbon atoms with a +2 coordination number induced cytotoxicity in macrophages and melanoma cells, and had a moderate antibacterial effect against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria strains, all while being cytocompatible towards human dermal fibroblasts. Moreover, substituting some of the OH groups with ammonia diminished their cytotoxicity towards macrophages while still maintaining the aforementioned positive qualities. At the same time, CNTs with a large number of carbon atoms with a +3 coordination number had a high innate cytocompatibility towards normal healthy cells but were toxic towards cancer cells and bacteria. The latter was further boosted by reacting the CNTs' carboxyl groups with ammonia. Although requiring further analyses, the results of this study, thus, introduce new CNTs that without drugs can treat cancer, inflammation, and/or infection while still remaining cytocompatible with mammalian cells.


Asunto(s)
Nanotubos de Carbono , Animales , Humanos , Nanotubos de Carbono/química , Escherichia coli , Staphylococcus aureus , Amoníaco/farmacología , Bacterias , Antibacterianos/farmacología , Inflamación , Mamíferos
4.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887163

RESUMEN

Isoflavonoids such as genistein (GE) are well known antioxidants. The predictive biological activity of structurally new compounds such as thiogenistein (TGE)-a new analogue of GE-becomes an interesting way to design new drug candidates with promising properties. Two oxidation strategies were used to characterize TGE oxidation products: the first in solution and the second on the 2D surface of the Au electrode as a self-assembling TGE monolayer. The structure elucidation of products generated by different oxidation strategies was performed. The electrospray ionization mass spectrometry (ESI-MS) was used for identifying the product of electrochemical and hydrogen peroxide oxidation in the solution. Fourier transform infrared spectroscopy (FT-IR) with the ATR mode was used to identify a product after hydrogen peroxide treatment of TGE on the 2D surface. The density functional theory was used to support the experimental results for the estimation of antioxidant activity of TGE as well as for the molecular modeling of oxidation products. The biological studies were performed simultaneously to assess the suitability of TGE for antioxidant and antitumor properties. It was found that TGE was characterized by a high cytotoxic activity toward human breast cancer cells. The research was also carried out on mice macrophages, disclosing that TGE neutralized the production of the LPS-induced reactive oxygen species (ROS) and exhibits ABTS (2,2'-azino-bis-3-(ethylbenzothiazoline-6-sulphonic acid) radical scavenging ability. In the presented study, we identified the main oxidation products of TGE generated under different environmental conditions. The electroactive centers of TGE were identified and its oxidation mechanisms were proposed. TGE redox properties can be related to its various pharmacological activities. Our new thiolated analogue of genistein neutralizes the LPS-induced ROS production better than GE. Additionally, TGE shows a high cytotoxic activity against human breast cancer cells. The viability of MCF-7 (estrogen-positive cells) drops two times after a 72-h incubation with 12.5 µM TGE (viability 53.86%) compared to genistein (viability 94.46%).


Asunto(s)
Antioxidantes , Neoplasias de la Mama , Animales , Antioxidantes/química , Antioxidantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Genisteína/farmacología , Humanos , Peróxido de Hidrógeno , Lipopolisacáridos , Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Espectroscopía Infrarroja por Transformada de Fourier
5.
Bioact Mater ; 6(6): 1811-1826, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34632164

RESUMEN

In this work, polymeric and bioactive glass (BG)-modified composite films were successfully loaded with polyphenols (PPh) extracted from sage. It was hypothesized that PPh, alone and in combination with BGs particles, would affect physicochemical and biological properties of the films. Furthermore, sol-gel-derived BG particles would serve as an agent for control the release of the polyphenolic compounds, and other important properties related to the presence of PPh. The results showed that polyphenolic compounds significantly modified numerous material properties and also acted as biologically active substances. On the one hand, PPh can be considered as plasticizers for PCL, on the other hand, they can act as coupling agent in composite materials, improving their mechanical performance. The presence of PPh in materials improved their hydrophilicity and apatite-forming ability, and also provided antioxidant activity. What is important is that the aforementioned properties and kinetics of PPh release can be modulated by the use of various concentrations of PPh, and by the modification of PCL matrix with sol-gel-derived BG particles, capable of binding PPh. The films containing the lowest concentration of PPh exhibited cytocompatibility, significantly increased alkaline phosphatase activity and the expression of bone extracellular matrix proteins (osteocalcin and osteopontin) in human normal osteoblasts, while they reduced intracellular reactive oxygen species production in macrophages. Furthermore, materials loaded with PPh showed antibiofilm properties against Gram positive and Gram negative bacteria. The results suggest that obtained materials represent potential multifunctional biomaterials for bone tissue engineering with a wide range of tunable properties.

6.
Materials (Basel) ; 14(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500927

RESUMEN

Currently, the challenge for bone tissue engineering is to design a scaffold that would mimic the structure and biological functions of the extracellular matrix and would be able to direct the appropriate response of cells through electrochemical signals, thus stimulate faster bone formation. The purpose of the presented research was to perform and evaluate PCL/n-HAp scaffolds locally modified with a conductive polymer-polyaniline. The material was obtained using electrospinning, and a simple ink-jet printing method was applied to receive the conductive polyaniline patterns on the surface of the electrospun materials. The samples of scaffolds were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal analysis (DSC, TGA), and infrared spectroscopy (FTIR) before and after immersion of the material in Simulated Body Fluid. The effect of PANI patterns on changes in the SBF mineralization process and cell morphology was evaluated in order to prove that the presented material enables the growth and proliferation of bone cells.

7.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445486

RESUMEN

Pharmacological and nutraceutical effects of isoflavones, which include genistein (GE), are attributed to their antioxidant activity protecting cells against carcinogenesis. The knowledge of the oxidation mechanisms of an active substance is crucial to determine its pharmacological properties. The aim of the present work was to explain complex oxidation processes that have been simulated during voltammetric experiments for our new thiolated genistein analog (TGE) that formed the self-assembled monolayer (SAM) on the gold electrode. The thiol linker assured a strong interaction of sulfur nucleophiles with the gold surface. The research comprised of the study of TGE oxidative properties, IR-ATR, and MALDI-TOF measurements of SAM before and after electrochemical oxidation. TGE has been shown to be electrochemically active. It undergoes one irreversible oxidation reaction and one quasi-reversible oxidation reaction in PBS buffer at pH 7.4. The oxidation of TGE results in electroactive products composed likely from TGE conjugates (e.g., trimers) as part of polymer. The electroactive centers of TGE and its oxidation mechanism were discussed using IR supported by quantum chemical and molecular mechanics calculations. Preliminary in-vitro studies indicate that TGE exhibits higher cytotoxic activity towards DU145 human prostate cancer cells and is safer for normal prostate epithelial cells (PNT2) than genistein itself.


Asunto(s)
Anticarcinógenos/farmacología , Antioxidantes/farmacología , Genisteína/farmacología , Oro/química , Compuestos de Sulfhidrilo/química , Anticarcinógenos/química , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Genisteína/química , Humanos , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
8.
Mater Sci Eng C Mater Biol Appl ; 120: 111703, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545862

RESUMEN

Physicochemical, electrochemical and biological performance of 4 types of all-carbon nanotube layers was studied. Higher oxidation state of carbon was responsible for micro-scaled uniformity of the layers and excellent electrical conductivity, while nitrogen containing functional groups yielded materials with anisotropy similar to natural tissues and reduced work function. All materials were cytocompatible with mammalian fibroblasts (viability >80%, cytotoxicity <3% at day 7) and human dermal fibroblast (viability of cells >70% at day 1), while reducing bacterial and cancer cells proliferation without adding any drug. After 8 h culture, a ~50% depletion in the number of Gram-positive bacteria was observed on materials with lower work function, while Gram-negative bacteria were more sensitive towards carbon coordination number and presence of nitrogen atoms (cell depletion of up to 48% on amidized carbon nanotubes). After 1-day culture, >80% reduction in the melanoma cells number, connected with enhanced production of reactive oxygen species (ROS) was observed. All-carbon nanotube layers decreased bacteria and cancer cell functions without negatively influencing mammalian cells nor using drugs and we believe that this can be explained by various sensitivity of the tested cells towards exogenous ROS overproduction. As the concerns over implant-related infections as well as rates of antibiotic-resistant bacteria and chemotherapeutic-resistant cancer cells are growing, such materials should pave the way for a wide range of biomedical applications.


Asunto(s)
Nanotubos de Carbono , Animales , Antibacterianos/farmacología , Bacterias , Conductividad Eléctrica , Fibroblastos , Humanos
9.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066080

RESUMEN

Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.


Asunto(s)
Osteocondrosis/cirugía , Poliglactina 910/química , Andamios del Tejido/química , Animales , Regeneración Ósea , Colágeno/química , Hidroxiapatitas/química , Porosidad , Conejos , Andamios del Tejido/efectos adversos
10.
Int J Pharm ; 583: 119319, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325244

RESUMEN

Cancer is one of the leading causes of morbidity and mortality worldwide and nanotechnology has a significant potential to enhance the therapeutic and diagnostic performance of anti-cancer agents. Our work offers a simple and feasible strategy for thiocompound nanomedicines to be used in cancer therapy. Novel gold nanoparticles conjugated with thioabiraterone (AuNP-S-AB) were synthesized and significant new analytical methodologies were developed for their characterization by UV-Vis, TEM, IR, NMR and TGA. Our synthetic approach was based on the ligand exchange of citrates to thioabiraterone on gold nanoparticles. The average particle size of AuNP-S-AB was 14.5 nm with a spherical shape. The identity of thioabiraterone on the gold nanoparticles was proved by NMR and IR spectroscopy. The coverage of the gold nanoparticles with 40.9% (m/m) thioabiraterone was calculated from a TGA analysis. Molecular interactions between the thiol group of thioabiraterone and gold nanoparticles were evaluated through a combined experimental and theoretical study using the density functional theory (DFT). Additionally, an experiment conducted on hepatocytes or human prostate epithelial cells proved that newly synthesized thiol forms of abiraterone, as well as AuNP-S-AB, are more biocompatible than abiraterone. Our proposed idea of delivering abiraterone with our newly designed AuNP-S-AB may constitute a promising and novel prospect in cancer therapy.


Asunto(s)
Androstenos/química , Citratos/química , Oro/química , Nanopartículas del Metal/química , Compuestos de Sulfhidrilo/química , Androstenos/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citratos/administración & dosificación , Células Epiteliales/efectos de los fármacos , Oro/administración & dosificación , Humanos , Ligandos , Hígado/citología , Masculino , Nanopartículas del Metal/administración & dosificación , Próstata/citología , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Sulfhidrilo/administración & dosificación
11.
Pharmaceutics ; 11(12)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861138

RESUMEN

The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.

12.
J Mater Sci Mater Med ; 30(7): 80, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243558

RESUMEN

In this work, composite membranes were investigated as future components of a layered implant for the reconstruction of nasal septum. Incorporation of zinc ions into nasal implants could potentially provide antibacterial properties to decrease or eliminate bacterial infections and subsequent surgical complications. Two types of membranes were prepared using an electrospinning method: PCL with bioglass and PCL with bioglass doped with Zn. The aim of this work was to investigate the influence of bioglass addition on the morphology, fiber diameter and composition of the membranes. The apatite-forming ability was examined in Simulated Body Fluid (SBF). The cytotoxicity of the membranes, ALP activity and in vitro mineralization were evaluated in cell culture. The mineralization and ALP activity was higher for polycaprolactone membranes modified with Zn doped bioglass than compared to pure PCL membranes or control material. The results proved that the presence of Zn2+ in the electrospun membranes = influence the osteogenic differentiation of cells.


Asunto(s)
Cerámica/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Zinc/química , Antibacterianos , Apatitas/química , Líquidos Corporales , Sustitutos de Huesos , Cartílago/fisiología , Diferenciación Celular , Proliferación Celular , Humanos , Iones , Tabique Nasal/fisiología , Osteoblastos/metabolismo , Osteogénesis , Tamaño de la Partícula , Impresión Tridimensional , Andamios del Tejido
13.
Chem Biodivers ; 16(3): e1800543, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30556377

RESUMEN

The aims of this study were to identify the short aromatic peptides which are able to form highly ordered amyloid-like structures in self-assembling processes, to test the influence of length of hydrophobic peptides on tendency to aggregation, and to check if aggregated peptides fulfill requirements expected for materials useful for scaffolding. All tested hydrophobic peptides were prepared on solid phase by using DMT/NMM/TsO- as a coupling reagent. The progress of aggregation was studied by set of independent tests. All aggregated peptides were found stable under in vitro conditions. All fibrous material formed by self-assembling of peptides does not show any cytotoxic effects on L929 fibroblast cells. Peptides containing tyrosine and tryptophan residues even effectively accelerated the proliferation and stimulated the activity of L929 fibroblasts.


Asunto(s)
Péptidos/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Péptidos/síntesis química , Péptidos/química , Medicina Regenerativa
14.
Biomed Res Int ; 2018: 2610637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417010

RESUMEN

The aim of this study was to evaluate a novel composite material for tracheal reconstruction in an ovine model. A polymer containing various forms of carbon fibers (roving, woven, and nonwoven fabric) impregnated with polysulfone (PSU) was used to create cylindrical tracheal implants, 3 cm in length and 2.5 cm in diameter. Each implant, reinforced with five rings made of PSU-impregnated carbon-fiber roving, had three external layers made of carbon-fiber woven fabric and the inner layer formed of carbon-fiber nonwoven fabric. The inner surface of five implants was additionally coated with polyurethane (PU), to promote migration of respiratory epithelium. The implants were used to repair tracheal defects (involving four tracheal rings) in 10 sheep (9-12 months of age; 40-50 kg body weight). Macroscopic and microscopic characteristics of the implants and tracheal anastomoses were examined 4 and 24 weeks after implantation. At the end of the follow-up period, outer surfaces of the implants were covered with the tissue which to various degree resembled histological structure of normal tracheal wall. In turn, inner surfaces of the prostheses were covered only with vascularized connective tissue. Inner polyurethane coating did not improve the outcomes of tracheal reconstruction and promoted excessive granulation, which contributed to moderate to severe stenosis at the tracheal anastomoses. The hereby presented preliminary findings constitute a valuable source of data for future research on a tracheal implant being optimally adjusted for medical needs.


Asunto(s)
Materiales Biocompatibles/química , Ovinos/cirugía , Tráquea/cirugía , Animales , Biomimética/métodos , Poliuretanos/química , Prótesis e Implantes , Procedimientos de Cirugía Plástica/métodos , Mucosa Respiratoria/cirugía
15.
Mater Sci Eng C Mater Biol Appl ; 93: 950-957, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274132

RESUMEN

The aim of this work was to modify the surface of the titanium implants by application of multifunctional polymer coatings based on polyurethane and its composites with graphene and ß-TCP. Graphene was used as an antibacterial agent, TCP as a bioactive component, and polymer coating as a corrosion protection of metal. As a result, materials with different surface characteristic, from hydrophilic to hydrophobic, varying in bioactivity and biocompatibility, were obtained. Wettability of the materials was tested by the sessile drop method; surface roughness was assessed on the basis of Ra parameter, measured by contact profilometry. The surface characteristic was complemented by microhardness testing. Also, in vitro immersion tests in fluids and cell tests were performed. Obtained results suggest that it is possible to fabricate, on the surface of titanium implants, multifunctional composite coatings based on polyurethane, with optimal composition for bone surgery and dentistry applications. The study further showed that the chemical structure (composition) of the polymer and the graphene content are crucial in terms of biocompatibility of the final material, while addition of tricalcium phosphate affects its bioactivity.


Asunto(s)
Materiales Biocompatibles Revestidos , Implantes Experimentales , Ensayo de Materiales , Osteoblastos/metabolismo , Titanio , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Grafito/química , Grafito/farmacología , Humanos , Osteoblastos/citología , Poliuretanos/química , Poliuretanos/farmacología , Titanio/química , Titanio/farmacología
16.
Mater Sci Eng C Mater Biol Appl ; 92: 88-95, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184818

RESUMEN

Development of functional coatings for artificial bone implants that strengthen the osseointegration and accelerate bone healing processes is urgently needed in the biomedical field. In this study we present biological effect of novel composite coatings with different concentration of silica nanoparticles within crystalline hydroxyapatite matrix (HAp-SiO2) synthesized on titanium under hydrothermal conditions. Samples were analyzed for their elemental composition, structure, bioactivity and in vitro cytotoxicity. The results indicate the formation and homogeneous distribution of silica nanoparticles on the surface of hexagonal hydroxyapatite (HAp) crystals. The coatings show improved bioactivity in comparison with pure HAp after 4 days of immersion in simulated body fluid (SBF). The responses of human osteoblast-like cells (MG-63) cultured onto the synthesized materials provide evidence that HAp-SiO2 composites exhibit good biocompatibility. We propose that this is because HAp-SiO2 composites favor biomineralization process with cell proliferation remaining unaffected, regardless of the amount of silica. Furthermore, SEM and fluorescence measurements demonstrate that HAp-SiO2 had positive effect on cell morphology, favoring cell adhesion.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Durapatita/química , Nanopartículas/química , Dióxido de Silicio/química , Titanio/química , Líquidos Corporales/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/toxicidad , Prótesis e Implantes , Propiedades de Superficie , Temperatura
17.
Nanomaterials (Basel) ; 8(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262741

RESUMEN

The aim of this work was to investigate of biocompatibility of polymeric implants modified with silver nanoparticles (AgNPs). Middle ear prostheses (otoimplants) made of the (poly)acrylonitrile butadiene styrene (ABS) and ABS modified with silver nanoparticles were prepared through extrusion and injection moulding process. The obtained prostheses were characterized by SEM-EDX, micro-CT and mechanical tests, confirming their proper shape, good AgNPs homogenization and mechanical parameters stability. The biocompatibility of the implants was evaluated in vivo on rats, after 4, 12, 24 and 48 weeks of implantation. The tissue-healing process and cytotoxicity of the implants were evaluated on the basis of microscopic observations of the materials morphology after histochemical staining with cytochrome c oxidase (OCC) and acid phosphatase (AP), as well as via micro-tomography (ex vivo). The in vivo studies confirmed biocompatibility of the implants in the surrounding tissue environment. Both the pure ABS and nanosilver-modified ABS implants exhibited a distinct decrease in the area of granulation tissue which was replaced with the regenerating muscle tissue. Moreover, a slightly smaller area of granulation tissue was observed in the surroundings of the silver-doped prosthesis than in the case of pure ABS prosthesis. The kinetics of silver ions releasing from implants was investigated by ICP-MS spectrometry. The measurement confirmed that concentration of the silver ions increased within the implant's immersion period. Our results showed that middle ear implant with the nanoscale modification is biocompatible and might be used in ossicular reconstruction.

18.
Pharm Res ; 35(7): 144, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777389

RESUMEN

PURPOSE: The purpose of the study was initial evaluation of applicability of metal organic framework (MOF) Fe-MIL-101-NH2 as a theranostic carrier of antituberculous drug in terms of its functionality, i.e. drug loading, drug dissolution, magnetic resonance imaging (MRI) contrast and cytotoxic safety. METHODS: Fe-MIL-101-NH2 was characterized using X-ray powder diffraction, FTIR spectrometry and scanning electron microscopy. The particle size analysis was determined using laser diffraction. Magnetic resonance relaxometry and MRI were carried out on phantoms of the MOF system suspended in polymer solution. Drug dissolution studies were conducted using Franz cells. For MOF cytotoxicity, commercially available fibroblasts L929 were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal bovine serum. RESULTS: MOF particles were loaded with 12% of isoniazid. The particle size (3.37-6.45 µm) depended on the micronization method used. The proposed drug delivery system can also serve as the MRI contrast agent. The drug dissolution showed extended release of isoniazid. MOF particles accumulated in the L929 fibroblast cytoplasmic area, suggesting MOF release the drug inside the cells. The cytotoxicity confirmed safety of MOF system. CONCLUSIONS: The application of MOF for extended release inhalable system proposes the novel strategy for delivery of standard antimycobacterial agents combined with monitoring of their distribution within the lung tissue.


Asunto(s)
Antituberculosos/química , Portadores de Fármacos/química , Hierro/química , Nanomedicina Teranóstica/métodos , Tuberculosis , Animales , Antituberculosos/administración & dosificación , Antituberculosos/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hierro/administración & dosificación , Hierro/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/metabolismo
19.
Molecules ; 23(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498711

RESUMEN

This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light. The in vitro stability of the aggregates in buffered saline solution was assessed over 30 days. Materials with potential for use in regenerative medicine were selected based on the cytotoxicity of the peptides to the endothelial cell line EA.hy 926 and the wettability of the surfaces of the films, as well as using scanning electron microscopy. The criteria were fulfilled by H-dPhedPhe-OH, H-dCysdPhedPhe-OH, H-CysTyrTyr-OH, H-dPhedPhedCys-OH, H-TyrTyrMet-OH, and H-TyrMetTyr-OH. Our preliminary results suggest that the morphology and cell viability of L919 fibroblast cells do not depend on the stereochemistry of the self-organizing peptides.


Asunto(s)
Aminoácidos/química , Dipéptidos/química , Oligopéptidos/química , Andamios del Tejido , Animales , Benzotiazoles , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Rojo Congo , Dipéptidos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Oligopéptidos/farmacología , Agregado de Proteínas , Medicina Regenerativa , Tiazoles , Ingeniería de Tejidos
20.
J Appl Biomater Funct Mater ; 16(1): 36-41, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28623633

RESUMEN

BACKGROUND: Commonly, intramedullary nails are made of nondegradable materials, and hence they need to be removed once the bone fracture is healed. We propose a novel composite material consisting of poly-L-lactide matrix modified with carbon and alginate fibers to be used for biodegradable intramedullary fixation. The aim of this study was to make in vitro and in vivo biocompatibility assessments. METHODS: In the in vitro conditions, biocompatibility of biomaterials was compared using normal human osteoblasts. After 3 and 7 days, cytotoxicity, viability and proliferation tests were performed, as well as cell morphology and adhesion observations. In the in vivo experiments, Californian rabbits (approx. 9 months old) were used. The composite nails and controls (Kirschner wires) were used for fixation of distal femoral osteotomy. The evaluation was made on the basis of clinical observations, radiographs taken after 2, 4, 6 and 8 weeks post implantation, and macroscopic and histological observations. RESULTS: Cell tests indicated that both modifiers had a positive influence on cell viability. Biodegradable composite nails led to bony union when used for fixation of distal diaphysis osteotomy in rabbits. Histological analysis showed that the initial focal necrosis should be fully compensated for by the osteoblast proliferation and trabeculae formation. CONCLUSIONS: Both in vitro and in vivo tests confirmed biocompatibility and potential applicability of novel biodegradable intramedullary nails modified with long carbon and alginate fibers for osteosynthesis of bone epiphysis.


Asunto(s)
Implantes Absorbibles , Alginatos , Clavos Ortopédicos , Carbono , Ensayo de Materiales , Osteoblastos/metabolismo , Adhesión Celular , Ácido Glucurónico , Ácidos Hexurónicos , Humanos , Osteoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...